

Materials for PCBs Rashad.M.Ramzan, Ph.D FAST-NU, Islamabad

- PCB Materials
 - Conductor Coating Material
 - Laminate Material
 - Impact of PCB Laminate on Signal Integrity Types of PCB Laminates
 - Based on Materials used
 - Based on Application
 - Properties of PCB laminates
 - Soldering Materials
- Panel and Panelization

Laminate Material
Conductor Material
– Al

High Speed PCB Design: Lecture-2

-CU

© Rashad.M.Ramzan 20010-11

High Speed PCB Design: Lecture-2 © Rashad.M.Ramzan 2020 in the Back-plane Differential Line

Courtesy AMP Circuits and Design

Laminate Impact on Signal Integrity

Attribute	Main Effect	Cause
Skew	Effects Timing	Unequal Dk on circuit
Rise/Fall time	Effects Waveforms Shape	Loss of high frequency harmonics
Noise,X-talk	Effects Waveforms Shape	Mutual Coupling(Dk)
Jitter	Effects Timing	Micro Dk Control
Attenuation	Effects Waveforms Shape	Loss of full signal Energy, High Df

High Speed PCB Design: Lecture-2

© Rashad.M.Ramzan 20010-11

13

Types of PCB Laminate All materials are basically composed of woven glass, plastic(resin) and copper. The mixing

- ratio enhanced the electrical properties.
- Three major Types
 - Enhanced Glass (Std Glass)
 - Dielectric Constant =6.6 Loss Tangent =.0012
 - Silicon glass (electrically enhanced)
 - Dielectric Constant = 4.4 Loss Tangent =.0006
 - Epoxy Resin
 - Dielectric Constant =3.7 Loss Tangent =.02

Dielectric constant (Dk)

- Is measure of how much charge two conductors can hold at a certain fixed voltage. Low Dk hold less charge and high Dk more charge. Its also measure of the ratio of velocity in conductor and free space.
- Determines propagation velocity and amount of capacitances during coupling
- Low Dk leads to large feature size
- Low Dk material support better impedance control
- Dk of most material drops with frequency , flattens about 1.5 GHz

High Speed PCB Design: Lecture-2 © Rashad.M.Ramzan 20010-11

Loss tangent or Dissipation factor

 $\alpha = 2.3 \text{ f} \tan(\delta) \cdot \sqrt{\epsilon \text{ eff}}$

Where : α - Attenuation in dB / inch.

f - Frequency in GHz

tan (δ) - Loss tangent of material

eeff - Effective relative Er of material

- Is measure of how much electromagnetic energy is absorbed by dielectric material. Like microwave oven, things that heat up quickly has high loss tangent. Glass and ceramic are low Df materials.
- Loss is frequency dependent, increases with frequency.
- Low loss improves signal integrity.
- Low loss allows more ringing from x-talk impedance mismatch.
- Low loss make more efficient wireless amplifier.

High Speed PCB Design: Lecture-2 © Rashad.M.Ramzan 20010-11

	Mater digi	rials inte tal appli	nded f cations	or	
Material	Er (* at 1.0 MHz)	Thickness tolerance	Copper style	Multilayer compatible	Loss tangent
FR4	3.9 - 4.6*	+/- 1-2 mils	ED only	Yes	.0203
FR408	3.4 – 4.1*	+/- 1-2 mils	ED only	Yes	.01015
BT Epoxy	3.9 – 4.6*	+/- 1-2 mils	ED only	Yes	.01502
Cyanate Ester	3.5 – 3.9*	+/- 1-2 mils	ED only	Yes	.009
Polyimide	4.0 - 4.5*	+/- 1-2 mils	ED only	Yes	.01
GETEK	3.5 – 4.2*	+/- 1-2 mils	ED only	Yes	.012
Nelco 4000-13	3.7 (1GHz)	+/- 1 mil	ED only	Yes	.01
Nelco 4000-13SI	3.5 (1GHz)	+/- 1 mil	ED only	Yes	.009
Nelco 6000	3.5 (1GHz)	+/- 1 mil	ED only	Yes	.008
Nelco 6000SI	3.2 (1GHz)	+/- 1 mil	ED only	Yes	.005
Speedboard N	3.0 *	+/- 1 mil	Prepreg	Yes	.02
Speedboard C	2.6 – 2.7*	+/- 1 mil	Prepreg	Yes	.004
Arlon 25 / Rogers 4003	3.4 (10GHz)	+/- 1 mil	ED only	Yes	.0027

ED = Electrically Deposited

High Speed PCB Design: Lecture-2

© Rashad.M.Ramzan 20010-11

21

Materials for Analog Applications

Mat	erials fo	or ana	log appl	ication	S
Material	Er (10.0 GHz)	Thickness tolerance	Copper	Multilayer compatible	Loss tangent
Rogers Ultralam 2000	2.4 - 2.6	+/5 mil	ED / rolled	No	.0019
Rogers 5870	2.3	+/5 mil	ED / rolled	No	.0012
Rogers 5880	2.2	+/5 mil	ED / rolled	No	.0009
Rogers 6002	2.94	+/5 mil	ED / rolled	Yes	.0012
Rogers 3003	3.0	+/- 1 mil	ED / rolled	Yes	.0013
Rogers 6006	6.15	+/5 mil	ED / rolled	No	.0019
Rogers 6010	10.2	+/5 mil	ED / rolled	No	.0023
Rogers 3006	6.15	+/- 1 mil	ED / rolled	Yes	.0025
Rogers 3010	10.2	+/- 1 mil	ED / rolled	Yes	.0035

Material Reference List

Material	Tg	e _{r*}	Tan (f)	DBV (V/mil)	WA, %
Standard FR-4 Epoxy Glass	125C	4.1	0.02	1100	0.14
Multifunctional FR-4	145C	4.1	0.022	1050	0.13
Tetra Functional FR-4	150C	4.1	0.022	1050	0,13
Nelco N4000-6	170C	4	0.012	1300	0,10
GETEK	180C	3.9	0.008	1100	0.12
BT Epoxy Glass	185C	4.1	0.023	1350	0.20
Cyanate Ester	245C	3.8	0.005	800	0,70
Polyimide Glass	285C	4.1	0.015	1200	0.43
Teflon	N/A	2.2	0,0002	450	0.01

* Measured with a TDR using velocity method.

Resin content 55%

Tg = glass transition temperature

DBV = dielectric breakdown voltage

er = relative dielectric constant

WA = water absorption

Tan (f) = loss tangent

All materials with woven glass reinforcement except teflon.

Note: Teflon is not a multilayer PCB material.

Application That Lead to High Frequency

Moral of Story

27

- Most digital circuits today (0.2 to 2.0 ns rise and fall times) can use FR4 as a base material without concern of circuit malfunction.
- Always analyze analog circuits to compare the operating parameters of the material with the acceptable losses in the circuit.
- Then choose the material most suited to the application, looking at cost as only one of the driving factors.

High Speed PCB Design: Lecture-2 © Rashad.M.Ramzan 20010-11

Pro-Cons of Pb-Free Solders

- Pros: Health Safety
- Cons: Sn whiskers, High temp soldering, At high temp low mechanical strength, low reflow soldering window (20C-40C), patent issues, Corrosion in unmodified wave soldering equipment

High Speed PCB Design: Lecture-2

© Rashad.M.Ramzan 20010-11

29

Solder Joints and Reliability

	Reliability			
Mechanical	Electrical	Thermal	Radiation	Altitude
Cause	Cause	Cause	Cause	Cause
Mechanical shock vibration, drop, twist	High humidity, voltage, current, contamination, power cycling	High temperature storage, thermal cycling & shock, high operating temperature	Alpha particles, beta or gamma Ultra violet	Pressure, temperature, condensation
Effect	Effect	Effect	Effect	Effect
Solder joint failure, interface degradation, physical damage	Corrosion, electromigration, Degraded interfaces	Intermetallic growth, solder joint fatigue, popcorning	Data loss, embrittlement, discoloration	Deformation, embrittlement, corrosion

Panel and Penelization

• Panel

- The raw size of laminate known as core come in standard sizes called panels.
- Panelize
 - To lay up more than one (usually identical) printed circuits on a panels is called penalization The modules can then be separated after assembly into discrete printed circuits.

	Contraction of Contract
Panel size	Image area
12" x 12"	10" x 10"
12" x 18"	10" x 16"
16" x 18"	14" x 16"
18" x 24"	16" x 22"
24" x 36"	22" x 34"

Penelization Example

